Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Genotypic variation in transpiration of coppiced poplar during the third rotation of a short-rotation bio-energy culture.

Identifieur interne : 000E59 ( Main/Exploration ); précédent : 000E58; suivant : 000E60

Genotypic variation in transpiration of coppiced poplar during the third rotation of a short-rotation bio-energy culture.

Auteurs : Alejandra Navarro ; Miguel Portillo-Estrada ; Nicola Arriga ; Stefan P P. Vanbeveren ; Reinhart Ceulemans

Source :

RBID : pubmed:30174726

Abstract

The productivity of short-rotation coppice (SRC) plantations with poplar (Populus spp.) strongly depends on soil water availability, which limits the future development of its cultivation, and makes the study of the transpirational water loss particularly timely under the ongoing climate change (more frequent drought and floods). This study assesses the transpiration at different scales (leaf, tree and stand) of four poplar genotypes belonging to different species and from a different genetic background grown under an SRC regime. Measurements were performed for an entire growing season during the third year of the third rotation in a commercial scale multigenotype SRC plantation in Flanders (Belgium). Measurements at leaf level were performed on specific days with a contrasted evaporative demand, temperature and incoming shortwave radiation and included stomatal conductance, stem and leaf water potential. Leaf transpiration and leaf hydraulic conductance were obtained from these measurements. To determine the transpiration at the tree level, single-stem sap flow using the stem heat balance (SHB) method and daily stem diameter variations were measured during the entire growing season. Sap flow-based canopy transpiration (Ec), seasonal dry biomass yield, and water use efficiency (WUE; g aboveground dry matter/kg water transpired) of the four poplar genotypes were also calculated. The genotypes had contrasting physiological responses to environmental drivers and to soil conditions. Sap flow was tightly linked to the phenological stage of the trees and to the environmental variables (photosynthetically active radiation and vapor pressure deficit). The total Ec for the 2016 growing season was of 334, 350, 483 and 618 mm for the four poplar genotypes, Bakan, Koster, Oudenberg and Grimminge, respectively. The differences in physiological traits and in transpiration of the four genotypes resulted in different responses of WUE.

DOI: 10.1111/gcbb.12526
PubMed: 30174726
PubMed Central: PMC6109959


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Genotypic variation in transpiration of coppiced poplar during the third rotation of a short-rotation bio-energy culture.</title>
<author>
<name sortKey="Navarro, Alejandra" sort="Navarro, Alejandra" uniqKey="Navarro A" first="Alejandra" last="Navarro">Alejandra Navarro</name>
<affiliation>
<nlm:affiliation>Research Center of Excellence on Plant and Ecosystems (PLECO) Department of Biology University of Antwerp Wilrijk Belgium.</nlm:affiliation>
<wicri:noCountry code="no comma">Research Center of Excellence on Plant and Ecosystems (PLECO) Department of Biology University of Antwerp Wilrijk Belgium.</wicri:noCountry>
</affiliation>
<affiliation>
<nlm:affiliation>Council for Agricultural Research and Economics (CREA), Research Centre for Vegetable and Ornamental Crops Pontecagnano SA Italy.</nlm:affiliation>
<wicri:noCountry code="subField">Research Centre for Vegetable and Ornamental Crops Pontecagnano SA Italy</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Portillo Estrada, Miguel" sort="Portillo Estrada, Miguel" uniqKey="Portillo Estrada M" first="Miguel" last="Portillo-Estrada">Miguel Portillo-Estrada</name>
<affiliation>
<nlm:affiliation>Research Center of Excellence on Plant and Ecosystems (PLECO) Department of Biology University of Antwerp Wilrijk Belgium.</nlm:affiliation>
<wicri:noCountry code="no comma">Research Center of Excellence on Plant and Ecosystems (PLECO) Department of Biology University of Antwerp Wilrijk Belgium.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Arriga, Nicola" sort="Arriga, Nicola" uniqKey="Arriga N" first="Nicola" last="Arriga">Nicola Arriga</name>
<affiliation>
<nlm:affiliation>Research Center of Excellence on Plant and Ecosystems (PLECO) Department of Biology University of Antwerp Wilrijk Belgium.</nlm:affiliation>
<wicri:noCountry code="no comma">Research Center of Excellence on Plant and Ecosystems (PLECO) Department of Biology University of Antwerp Wilrijk Belgium.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Vanbeveren, Stefan P P" sort="Vanbeveren, Stefan P P" uniqKey="Vanbeveren S" first="Stefan P P" last="Vanbeveren">Stefan P P. Vanbeveren</name>
<affiliation>
<nlm:affiliation>Research Center of Excellence on Plant and Ecosystems (PLECO) Department of Biology University of Antwerp Wilrijk Belgium.</nlm:affiliation>
<wicri:noCountry code="no comma">Research Center of Excellence on Plant and Ecosystems (PLECO) Department of Biology University of Antwerp Wilrijk Belgium.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Ceulemans, Reinhart" sort="Ceulemans, Reinhart" uniqKey="Ceulemans R" first="Reinhart" last="Ceulemans">Reinhart Ceulemans</name>
<affiliation>
<nlm:affiliation>Research Center of Excellence on Plant and Ecosystems (PLECO) Department of Biology University of Antwerp Wilrijk Belgium.</nlm:affiliation>
<wicri:noCountry code="no comma">Research Center of Excellence on Plant and Ecosystems (PLECO) Department of Biology University of Antwerp Wilrijk Belgium.</wicri:noCountry>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:30174726</idno>
<idno type="pmid">30174726</idno>
<idno type="doi">10.1111/gcbb.12526</idno>
<idno type="pmc">PMC6109959</idno>
<idno type="wicri:Area/Main/Corpus">000C80</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000C80</idno>
<idno type="wicri:Area/Main/Curation">000C80</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000C80</idno>
<idno type="wicri:Area/Main/Exploration">000C80</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Genotypic variation in transpiration of coppiced poplar during the third rotation of a short-rotation bio-energy culture.</title>
<author>
<name sortKey="Navarro, Alejandra" sort="Navarro, Alejandra" uniqKey="Navarro A" first="Alejandra" last="Navarro">Alejandra Navarro</name>
<affiliation>
<nlm:affiliation>Research Center of Excellence on Plant and Ecosystems (PLECO) Department of Biology University of Antwerp Wilrijk Belgium.</nlm:affiliation>
<wicri:noCountry code="no comma">Research Center of Excellence on Plant and Ecosystems (PLECO) Department of Biology University of Antwerp Wilrijk Belgium.</wicri:noCountry>
</affiliation>
<affiliation>
<nlm:affiliation>Council for Agricultural Research and Economics (CREA), Research Centre for Vegetable and Ornamental Crops Pontecagnano SA Italy.</nlm:affiliation>
<wicri:noCountry code="subField">Research Centre for Vegetable and Ornamental Crops Pontecagnano SA Italy</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Portillo Estrada, Miguel" sort="Portillo Estrada, Miguel" uniqKey="Portillo Estrada M" first="Miguel" last="Portillo-Estrada">Miguel Portillo-Estrada</name>
<affiliation>
<nlm:affiliation>Research Center of Excellence on Plant and Ecosystems (PLECO) Department of Biology University of Antwerp Wilrijk Belgium.</nlm:affiliation>
<wicri:noCountry code="no comma">Research Center of Excellence on Plant and Ecosystems (PLECO) Department of Biology University of Antwerp Wilrijk Belgium.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Arriga, Nicola" sort="Arriga, Nicola" uniqKey="Arriga N" first="Nicola" last="Arriga">Nicola Arriga</name>
<affiliation>
<nlm:affiliation>Research Center of Excellence on Plant and Ecosystems (PLECO) Department of Biology University of Antwerp Wilrijk Belgium.</nlm:affiliation>
<wicri:noCountry code="no comma">Research Center of Excellence on Plant and Ecosystems (PLECO) Department of Biology University of Antwerp Wilrijk Belgium.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Vanbeveren, Stefan P P" sort="Vanbeveren, Stefan P P" uniqKey="Vanbeveren S" first="Stefan P P" last="Vanbeveren">Stefan P P. Vanbeveren</name>
<affiliation>
<nlm:affiliation>Research Center of Excellence on Plant and Ecosystems (PLECO) Department of Biology University of Antwerp Wilrijk Belgium.</nlm:affiliation>
<wicri:noCountry code="no comma">Research Center of Excellence on Plant and Ecosystems (PLECO) Department of Biology University of Antwerp Wilrijk Belgium.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Ceulemans, Reinhart" sort="Ceulemans, Reinhart" uniqKey="Ceulemans R" first="Reinhart" last="Ceulemans">Reinhart Ceulemans</name>
<affiliation>
<nlm:affiliation>Research Center of Excellence on Plant and Ecosystems (PLECO) Department of Biology University of Antwerp Wilrijk Belgium.</nlm:affiliation>
<wicri:noCountry code="no comma">Research Center of Excellence on Plant and Ecosystems (PLECO) Department of Biology University of Antwerp Wilrijk Belgium.</wicri:noCountry>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Global change biology. Bioenergy</title>
<idno type="ISSN">1757-1693</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The productivity of short-rotation coppice (SRC) plantations with poplar (
<i>Populus</i>
spp.) strongly depends on soil water availability, which limits the future development of its cultivation, and makes the study of the transpirational water loss particularly timely under the ongoing climate change (more frequent drought and floods). This study assesses the transpiration at different scales (leaf, tree and stand) of four poplar genotypes belonging to different species and from a different genetic background grown under an SRC regime. Measurements were performed for an entire growing season during the third year of the third rotation in a commercial scale multigenotype SRC plantation in Flanders (Belgium). Measurements at leaf level were performed on specific days with a contrasted evaporative demand, temperature and incoming shortwave radiation and included stomatal conductance, stem and leaf water potential. Leaf transpiration and leaf hydraulic conductance were obtained from these measurements. To determine the transpiration at the tree level, single-stem sap flow using the stem heat balance (SHB) method and daily stem diameter variations were measured during the entire growing season. Sap flow-based canopy transpiration (
<i>E</i>
<sub>c</sub>
), seasonal dry biomass yield, and water use efficiency (WUE; g aboveground dry matter/kg water transpired) of the four poplar genotypes were also calculated. The genotypes had contrasting physiological responses to environmental drivers and to soil conditions. Sap flow was tightly linked to the phenological stage of the trees and to the environmental variables (photosynthetically active radiation and vapor pressure deficit). The total
<i>E</i>
<sub>c</sub>
for the 2016 growing season was of 334, 350, 483 and 618 mm for the four poplar genotypes, Bakan, Koster, Oudenberg and Grimminge, respectively. The differences in physiological traits and in transpiration of the four genotypes resulted in different responses of WUE.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">30174726</PMID>
<DateRevised>
<Year>2020</Year>
<Month>10</Month>
<Day>01</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">1757-1693</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>10</Volume>
<Issue>8</Issue>
<PubDate>
<Year>2018</Year>
<Month>Aug</Month>
</PubDate>
</JournalIssue>
<Title>Global change biology. Bioenergy</Title>
<ISOAbbreviation>Glob Change Biol Bioenergy</ISOAbbreviation>
</Journal>
<ArticleTitle>Genotypic variation in transpiration of coppiced poplar during the third rotation of a short-rotation bio-energy culture.</ArticleTitle>
<Pagination>
<MedlinePgn>592-607</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/gcbb.12526</ELocationID>
<Abstract>
<AbstractText>The productivity of short-rotation coppice (SRC) plantations with poplar (
<i>Populus</i>
spp.) strongly depends on soil water availability, which limits the future development of its cultivation, and makes the study of the transpirational water loss particularly timely under the ongoing climate change (more frequent drought and floods). This study assesses the transpiration at different scales (leaf, tree and stand) of four poplar genotypes belonging to different species and from a different genetic background grown under an SRC regime. Measurements were performed for an entire growing season during the third year of the third rotation in a commercial scale multigenotype SRC plantation in Flanders (Belgium). Measurements at leaf level were performed on specific days with a contrasted evaporative demand, temperature and incoming shortwave radiation and included stomatal conductance, stem and leaf water potential. Leaf transpiration and leaf hydraulic conductance were obtained from these measurements. To determine the transpiration at the tree level, single-stem sap flow using the stem heat balance (SHB) method and daily stem diameter variations were measured during the entire growing season. Sap flow-based canopy transpiration (
<i>E</i>
<sub>c</sub>
), seasonal dry biomass yield, and water use efficiency (WUE; g aboveground dry matter/kg water transpired) of the four poplar genotypes were also calculated. The genotypes had contrasting physiological responses to environmental drivers and to soil conditions. Sap flow was tightly linked to the phenological stage of the trees and to the environmental variables (photosynthetically active radiation and vapor pressure deficit). The total
<i>E</i>
<sub>c</sub>
for the 2016 growing season was of 334, 350, 483 and 618 mm for the four poplar genotypes, Bakan, Koster, Oudenberg and Grimminge, respectively. The differences in physiological traits and in transpiration of the four genotypes resulted in different responses of WUE.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Navarro</LastName>
<ForeName>Alejandra</ForeName>
<Initials>A</Initials>
<Identifier Source="ORCID">0000-0003-3406-7417</Identifier>
<AffiliationInfo>
<Affiliation>Research Center of Excellence on Plant and Ecosystems (PLECO) Department of Biology University of Antwerp Wilrijk Belgium.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Council for Agricultural Research and Economics (CREA), Research Centre for Vegetable and Ornamental Crops Pontecagnano SA Italy.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Portillo-Estrada</LastName>
<ForeName>Miguel</ForeName>
<Initials>M</Initials>
<Identifier Source="ORCID">0000-0002-0348-7446</Identifier>
<AffiliationInfo>
<Affiliation>Research Center of Excellence on Plant and Ecosystems (PLECO) Department of Biology University of Antwerp Wilrijk Belgium.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Arriga</LastName>
<ForeName>Nicola</ForeName>
<Initials>N</Initials>
<AffiliationInfo>
<Affiliation>Research Center of Excellence on Plant and Ecosystems (PLECO) Department of Biology University of Antwerp Wilrijk Belgium.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Vanbeveren</LastName>
<ForeName>Stefan P P</ForeName>
<Initials>SPP</Initials>
<Identifier Source="ORCID">0000-0002-6488-7443</Identifier>
<AffiliationInfo>
<Affiliation>Research Center of Excellence on Plant and Ecosystems (PLECO) Department of Biology University of Antwerp Wilrijk Belgium.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ceulemans</LastName>
<ForeName>Reinhart</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Research Center of Excellence on Plant and Ecosystems (PLECO) Department of Biology University of Antwerp Wilrijk Belgium.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>06</Month>
<Day>04</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Glob Change Biol Bioenergy</MedlineTA>
<NlmUniqueID>101517159</NlmUniqueID>
<ISSNLinking>1757-1693</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Populus</Keyword>
<Keyword MajorTopicYN="N">bio‐energy</Keyword>
<Keyword MajorTopicYN="N">leaf hydraulic conductance</Keyword>
<Keyword MajorTopicYN="N">stem heat balance method</Keyword>
<Keyword MajorTopicYN="N">water potential</Keyword>
<Keyword MajorTopicYN="N">water relations</Keyword>
<Keyword MajorTopicYN="N">water use efficiency</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2017</Year>
<Month>10</Month>
<Day>12</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2018</Year>
<Month>04</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>05</Month>
<Day>06</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>9</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>9</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>9</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30174726</ArticleId>
<ArticleId IdType="doi">10.1111/gcbb.12526</ArticleId>
<ArticleId IdType="pii">GCBB12526</ArticleId>
<ArticleId IdType="pmc">PMC6109959</ArticleId>
</ArticleIdList>
<pmc-dir>pmcsd</pmc-dir>
<ReferenceList>
<Reference>
<Citation>Ann Bot. 2008 Sep;102(3):399-407</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18587131</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2009 Nov;29(11):1329-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19773340</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1981 Aug;50(1):62-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28310062</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2005 Jul;167(1):53-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15948829</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2008 Apr;28(4):559-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18244943</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2007 Dec;27(12):1761-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17938107</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2005 Apr;25(4):425-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15687091</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 1999 Jul;19(8):493-501</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12651539</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1970 Aug;46(2):343-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16657462</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2014 Jul;34(7):701-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25074859</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2012 Jul;7(7):767-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22751307</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2012 Sep 26;12:173</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23013168</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2006;169(4):765-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16441757</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2009 Feb 26;9:23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19245718</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Environ Qual. 2001 Jan-Feb;30(1):30-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11215664</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2011 Mar;62(6):2093-106</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21193576</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2006 Feb;26(2):211-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16356918</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2008;178(4):719-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18422905</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1965 Apr 16;148(3668):339-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17832103</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1988 Nov;88(3):574-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16666351</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 1997 Oct;17(10):647-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14759904</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013;8(1):e54468</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23382900</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Glob Change Biol Bioenergy. 2017 Feb;9(2):370-384</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28239421</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 1994 Jul-Sep;14(7_9):1005-1018</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14967666</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2013 Apr;198(1):169-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23356378</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2015 Jul;66(14):4373-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25954045</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2011 Oct;143(2):154-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21623799</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009;181(3):651-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19054338</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Environ Qual. 2011 Sep-Oct;40(5):1593-600</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21869522</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list></list>
<tree>
<noCountry>
<name sortKey="Arriga, Nicola" sort="Arriga, Nicola" uniqKey="Arriga N" first="Nicola" last="Arriga">Nicola Arriga</name>
<name sortKey="Ceulemans, Reinhart" sort="Ceulemans, Reinhart" uniqKey="Ceulemans R" first="Reinhart" last="Ceulemans">Reinhart Ceulemans</name>
<name sortKey="Navarro, Alejandra" sort="Navarro, Alejandra" uniqKey="Navarro A" first="Alejandra" last="Navarro">Alejandra Navarro</name>
<name sortKey="Portillo Estrada, Miguel" sort="Portillo Estrada, Miguel" uniqKey="Portillo Estrada M" first="Miguel" last="Portillo-Estrada">Miguel Portillo-Estrada</name>
<name sortKey="Vanbeveren, Stefan P P" sort="Vanbeveren, Stefan P P" uniqKey="Vanbeveren S" first="Stefan P P" last="Vanbeveren">Stefan P P. Vanbeveren</name>
</noCountry>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000E59 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000E59 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:30174726
   |texte=   Genotypic variation in transpiration of coppiced poplar during the third rotation of a short-rotation bio-energy culture.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:30174726" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020